Multiscale simulation of atomic displacements induced by radiations into materials employed in microelectronic applications - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Thèse Année : 2021

Multiscale simulation of atomic displacements induced by radiations into materials employed in microelectronic applications

Modélisation des effets de déplacements atomiques induits par irradiation dans les matériaux pour la microélectronique

Résumé

The development and usage of dedicated opto and microelectronic devices is an essential aspect of space and nuclear research and industries. However, in space and nuclear environments, devices are subject to intense flux of energetic particles jeopardizing their correct working by inducing the formation of free charges via ionization of materials as well as creation of crystalline defects following atomic displacements. The latter mechanism is the subject of the present PhD thesis. Atomic displacements are quite well known from a technological point of view. For example, it is acknowledged they are responsible for the drastic increase of dark current observed in image sensors, or for the loss of maximum output power of solar cells. Nonetheless, the fundamental physical origins of experimentally measured effects are still subject to debate. The difficulties encountered in the establishment of a clear link between the effects observed in technologies and the fundamental mechanisms are partly due to the very short (of the order of the femtosecond to the picosecond for an atomic collision for example) characteristic timescales of the dynamic process at stake. Indeed, experiments cannot cover dynamic process of so small characteristic times. This is the reason why, in this PhD thesis, we resort to numerical modelling to understand the links between basic physical mechanisms and deleterious effects witnessed in technologies and thus predict the response to atomic displacements effects of materials used in microelectronic applications. Aiming at this ultimate purpose, a multiscale simulation approach has been developed, allowing simulating the entire process of atomic displacements: particle-matter interactions with Monte Carlo techniques, collision cascades propagation using Molecular Dynamics, healing of the damaged structures with a kinetic- Monte Carlo code and finally the electronic characterization of defects thought to be responsible for devices degradation with ab initio methods. All the mentioned steps of this approach, except the last one, have been addressed in this thesis. In more details, lots of efforts have been undertaken to improve the models and methodologies employed in the second molecular dynamics step, regarding the stochastic aspects of cascades as well as the inclusion of electronic effects. Concerning this last aspect, a method based on ab initio Time-Dependent Density Function Theory calculations of electronic stopping power is employed. The results of the studies carried out with the objective of improving the second step of Molecular Dynamics are presented in this thesis. In addition, the three first steps of the global simulation approach are applied to Si, Ge and Si-Ge alloys, and obtained results are presented and discussed in the manuscript.
Les domaines de l'ingénierie spatiale et nucléaire requièrent le développement et l'utilisation de composants opto et microélectroniques spécifiques. Or, pour des applications dans les domaines cités, les composants sont immergés dans des environnements fortement radiatifs et sont donc soumis à des flux importants de particules énergétiques qui dégradent leur fonctionnement en induisant la formation de charges libres par ionisation de la matière ainsi que la création de défauts cristallins par déplacements atomiques. Ce dernier mécanisme est le sujet de la présente thèse. D'un point de vue technologique, les effets des déplacements atomiques sont assez bien connus. Par exemple, on sait qu'ils sont responsables d'une forte augmentation du courant d'obscurité mesuré dans les capteurs d'images, ou de la perte de puissance maximale délivrée par les cellules photovoltaïques. En revanche, les origines physiques fondamentales des effets mesurés technologiquement sont encore sujettes à débat. Les difficultés rencontrées quant à l'établissement du lien entre la physique et les effets observés dans les technologies résident en partie dans la durée extrêmement courte des temps caractéristiques (de la femtoseconde à la picoseconde pour une collision atomique par exemple) des phénomènes dynamiques en jeu dans les premiers instants de la dégradation d'un composant, rendant impossible ou extrêmement compliquée la réalisation d'expériences. C'est la raison pour laquelle, dans cette thèse, nous avons recours à la simulation numérique afin de mieux comprendre le lien entre phénomènes physiques et effets observés et ainsi prédire la réponse des matériaux utilisés en microélectronique aux effets de déplacements atomiques. Une chaîne de simulation multi-échelle, décrite dans ce manuscrit, a été développée en ce sens, permettant de simuler tout le processus de déplacements atomiques : l'interaction particule-matière en Monte Carlo, la propagation de la cascade de collisions dans la matière en Dynamique Moléculaire, la guérison des structures endommagées en Monte Carlo-cinétique et enfin la caractérisation ab initio de l'activité électronique des défauts suspectés comme responsables de la dégradation de composants. Toutes les étapes, excepté la dernière, ont été adressées dans cette thèse. Plus spécifiquement, nous nous sommes appliqués à améliorer la seconde étape de Dynamique Moléculaire en insistant sur le caractère stochastique des cascades de collisions et sur l'inclusion des effets électroniques. En particulier sur ce dernier aspect, une méthode basée sur des calculs ab initio de Théorie de la Fonctionnelle de la Densité Dépendante du Temps est utilisée. Les résultats des études effectuées dans le but d'améliorer l'étape de Dynamique Moléculaire sont décrits dans la thèse. De plus, les trois premières étapes de la chaîne de simulation sont appliquées à Si, Ge et aux alliages Si-Ge, et les résultats obtenus présentés dans le manuscrit.
Fichier principal
Vignette du fichier
2021TOU30219a.pdf (7.87 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03514466 , version 1 (06-01-2022)
tel-03514466 , version 2 (09-05-2022)

Identifiants

  • HAL Id : tel-03514466 , version 2

Citer

Thomas Jarrin. Multiscale simulation of atomic displacements induced by radiations into materials employed in microelectronic applications. Micro and nanotechnologies/Microelectronics. Université Paul Sabatier - Toulouse III, 2021. English. ⟨NNT : 2021TOU30219⟩. ⟨tel-03514466v2⟩
250 Consultations
173 Téléchargements

Partager

More