Improving multiple pedestrians tracking with semantic information - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue Signal, Image and Video Processing Année : 2014

Improving multiple pedestrians tracking with semantic information

Résumé

This work presents an interacting multiple pedestrian tracking method for monocular systems that incorporates a prior knowledge about the environment and about interactions between targets. Pedestrian motion being ruled by both environment and social aspects, we model these complex behaviors by considering 4 cases of motion: going straight; finding one's way; walking around and standing still. They are combined within an Interacting Multiple Model Particle Filter strategy. We model targets interactions with social forces, included as potential functions in the weighting process of the Particle Filter. We use different social force setups within each motion model to handle high level behaviors (collision avoidance, flocking.. .). We evaluate our algorithm on challenging datasets and show that such semantic information improves the tracker performance compared to the literature.
Fichier principal
Vignette du fichier
JFMD_SIVP.pdf (1.87 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01763176 , version 1 (10-04-2018)

Identifiants

Citer

Jorge Francisco Madrigal Diaz, Jean-Bernard Hayet, Frédéric Lerasle. Improving multiple pedestrians tracking with semantic information. Signal, Image and Video Processing, 2014, 8 (suppl.1), pp.S113-S123. ⟨10.1007/s11760-014-0710-z⟩. ⟨hal-01763176⟩
71 Consultations
61 Téléchargements

Altmetric

Partager

More